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Abstract

The icy Galilean satellites of Jupiter--Europa, Ganymede, and Callisto--have unusual radar scat-

tering properties compared with those of the terrestrial planets or Earth's Moon. There are three

main features of the data that distinguish these targets: (1) The radar cross-section normalized by

the geometrical cross-section is an order of magnitude larger than that of any terrestrial planet. (2)

The reflected power is almost evenly distributed between two orthogonal polarizations with more

power being returned in the same circular polarization as was transmitted whereas virtually all of

the power returned from the terrestrial planets is contained in the opposite circular polarization to

the one that was transmitted. (3) The echo power spectra have a broad shape indicating a nearly

uniformly radar-bright surface in contrast to the spectra from the terrestrial planets that contain a

strong quasi-specular component from the vicinity of the sub-radar point and very little reflected

power from the rest of the surface. The normalized radar cross-sections decrease as the areal water-

ice coverage decreases from Europa to Ganymede to Callisto. Recently, radar echoes from the polar

caps of Mars and Mercury, and from Saturn's satellite Titan imply similarly strong cross-sections

and have classically unexpected polarization properties and it is also thought that this is due to the

presence of ice on the surface.

We analyze a model called the radar glory model and show that the main features of the radar

echoes calculated from this model agree well with the observations from all three icy Galilean satel-

lites. This model involves long radar paths in the ice below the surface and special structures in

which the refractive index decreases abruptly at a hemispherical boundary. It is not known whether

such structures exist or how they could be created, but possible scenarios can be imagined such as

the formation of an impact crater followed by deposition of a frost layer follwed by a resurfacing

event in which a layer of solid ice is placed above the layer of frost. Regardless of the exact geophys-

ical processes required to create such structures, the superior ability of this model to account for all

of the important observations with very few adjustable parameters and with no ad hoc assumptions

is a compelling argument in support of at least the electromagnetic model. The key features of the

electromagnetic model are multiple subsurface scattering events, total internal reflection, and a low

degree of randomness imposed on a deterministic geometry that strongly favors backscattering.
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Chapter 1

Introduction

The field of radar astronomy began shortly after World War II when radar echoes were obtained

from Moon. (For a brief history of radar astronomy see Ostro (1987),Muhleman et al. (1965),and

Muhleman et al. (1965).) In the following few decades before the echoes were obtained from

the Galilean satellites, echoes were obtained from Mercury, Venus, Mars, Saturn's rings, and a few

asteroids. The echoes from the terrestrial planets and Moon are similar and set the standard for what

was expected from planetary targets. The typical echo from the terrestrial planets is characterized by

a small radar cross-section relative to its geometrical cross section. When circularly polarized fields

of a given helicity are transmitted nearly all of the reflected fields are in the opposite helicity state

and the spectra (a plot of power versus Doppler frequency) show a strong quasi-specular component

around the sub-radar point and a weak diffuse component from the rest of the surface.

The first attempt to detect radar echoes from the Galilean satellites was made in 1970 (Campbell

et al., 1977), but was not successful. In 1974 Ganymede became the first Galilean satellite detected

by radar (Goidstein and Morris, 1975) using the 64 meter Goldstone antenna. From the very weak

echoes obtained it was estimated that the radar cross section of Ganymede was 12% that of a

perfectly conducting, smooth sphere--a result that was comparable with other radar targets such

as the terrestrial planets and asteroids. These echoes also revealed a broad power spectrum which

was quite different than that observed for the terrestrial planets, but comparable to the spectrum

obtained from an asteroid's rough surface. This detection was of interest for the fact that it could

be done, but did not hint at the truly unique nature of Ganymede's, as well as the other icy Galilean

satellites', radar echoes. The entire set of Galilean satellites were observed using radar in 1975

using the Arecibo S-band radar system which had five times the sensitivity of any other system for

studying the Galilean satellites (Campbell et al., 1977). Since then, radar echoes from the Galilean

satellites have been obtained whenever Jupiter was at declinations favorable for viewing by Arecibo

(a period of about four years once every about eleven years). A summary of the observations made

in the years 1975-1979 are given in Ostro (1982) and a summary of the observations made in the



CHAPTER 1. INTRODUCTION 2

years 1987-1991 are given in Ostro el al. (1992).

The radar echoes from the Galilean satellites are very different than those from the terrestrial

planets and the term bizarre has often been used when referring to them. Soon after it was recognized

that the echoes from these satellites were so unusual it was realized that the fact that the surfaces are

made up of large quantities of water ice, which is a poor absorber of microwaves, had something to

do with the observations. However, after more than almost two decades in which at least five serious

models for explaining the data have been proposed the issue has not been settled to any degree of

certainty. The basic reason for this is that the data do not sufficiently constrain the models. New

types of data are required such as data from a bistatic radar experiment in which different antennas

at different angular positions are used to transmit and receive the radio waves so that the angular

dependence of the scattering can be determined.

In the following chapter we will give background information on the basic physical characteristics

of these satellites, the properties of ice that are important to understanding the radar echoes, the

experiment and the data, and the models that have been proposed to explain the data. Then in

chapter 3 we present the details of our analysis of the radar glory model. This model was first

proposed by Eshleman (1986) and this report extends the analysis of that model to include certain

effects that were previously neglected and to calculate the Doppler spectra which had not been

calculated before. That chapter will end with a comparison of model calculations with the data and

it will be seen that the model predictions are consistent with all the main features in the data.
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Background

2.1 The Incidence and Importance of Ice

Four of the satellites of Jupiter are referred to as the Galilean satellites in honor of Galileo who

is credited with their discovery in 1610 using one of the earliest telescopes. Of these four three

of them--Europa, Ganymede, and Callisto--are different than the fourth one--lo---because their

surfaces are largely composed of ice (throughout this document the term ice refers to H_O ice,

usually in its main crystalline form called ice Ih (Hobbs, 1974)). It is this distinguishing feature that

is most likely responsible for the unusual radar backscattering properties of the three icy satellites

that is the subject of this report. Io is a very interesting satellite, but it is not a very good radar

backscatterer and so I will not discuss Io any further.

Some of the physical characteristics of the Icy Galilean satellites are summarized in Table 1.

Europa is about the size of Earth's Moon and its bulk composition is mostly silicate rock material

with a crust of ice to a depth of at least 25 km. Spectral measurements indicate that the surface of

Europa is virtually 100% ice. Ganymede and Callisto are about the size of Mercury and their bulk

composition is a mixture of ice and rock. Ganymede is a well differentiatied body and so much of

the ice is contained in the upper layers. Spectral measurements indicate that Ganymede's surface

is about 50% ice. Callisto on the other hand is not very well differentiated and so it does not have

most of its ice near its surface. Spectral measurements indicate that its surface contains less ice

than Ganymede and that the aerial coverage is about 10%. The temperatures of all these satellites

is about 100 K.

Most of the theories that have been proposed to explain the strange backscattering properties of

these satellites involves subsurface scattering and long radar paths. This is possible because ice at

these cold temperatures is not a strong absorber at microwave wavelengths. Actually no laboratory

measurements are available at these temperatures of the complex dielectric constant. It is usually

assumed that the absorption length in ice on these satellites is much longer than what is required for
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the particular model being analyzed. This assumption appears to be based on an extrapolation using

the standard Debye theory of the permitivity with the temperature dependence of certain parameters

determined from theory and measurements made at long wavelengths (A > 1.5 km) and temperatures

down to 200 K (Thompson and Squyres, 1990). However, Thompson and Squyres (1990) argue

that this extrapolation is inaccurate at microwave frequencies because the Debye formulas don't

account for the large tails of absorption features in the millimeter wavelength range that influence

the microwave absorption. Thompson and Squyres derive formulas with empirically determined

parameters based on measurements from optical wavelengths to 8.6 m-A at temperatures above 213 K

which they propose to be better than the previous formulas for extrapolating to cold temperatures

at microwave frequencies. The real part of the dielectric constant given by the Thompson and

Squyres formulas agrees with the previous results at all wavelengths and temperatures. However,

the imaginary part of the dielectric constant in the Thompson and Squyres formulas is orders of

magnitude larger than that previously reported. A convenient parameter for discussing absorption is

the absorption coefficient which is proportional to the imaginary part of the dielectric constant and

is the propagation distance required to reduce the power by a factor 1/e. At 12.6 cm-A and 100 K,

the Thompson and Squyres formulas give an absorption length of 22 km whereas the older formulas

give 9 x 1015 km. The absorption lengths at all temperatures of interest at the Galilean satellites

based on the standard formulas are much larger than the radii of the satellites. This justifies the

usual analyses that regard the ice to be free of absorption. However, if the Thompson and Squyres

formulas are correct, then the absorption in the ice may play an important role in the differences

in the observed scattering properties of these satellites. For future reference, the refractive index

and absorption length based on the Thompson and Squyres formulas at temperatures of interest

are tabulated in Table 2. In our analysis, we have neglected the effects of absorption by the ice

like all the other theories. The effects of absorption can be accounted for in an ad hoc manner by

multiplying the power by exp(-L/c_) where L is the total distance traveled in ice by the radar waves

and _ is the absorption length.

Table 3 shows the possible polymorphs of ice that could possibly exist on the icy Galilean satellites

(Gaffney and Matson, 1980). The polymorphs are forms of ice other than the normal Ih hexagonal

form of ice that form at higher pressures. Gaffney and Matson hypothesize that the polymorphs

will occur when impacts occur during crater formation. They also expect that at the temperatures

found in the outer solar system, that the I¢ form is stable and will occur in abundance since there

has been a long time for it to accumulate. A likely place to find this form, they claim, might be as

a light frost cover in the low albedo regions of Ganymede poleward of 40° latitude.

Meteor bombardment, pressure, and thermal effects also act to modify the structure of ices on

satellites (Smoluchowski and McWilliam, 1984). Meteor bombardment in porous ice results in some

densification, but mainly results in the formation of ice crystalline polymorphs and in amorphous

ice below 150 K. Smoluchowski (1983) discusses amorphous ice which is created when water vapor
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condenses directly into ice at temperatures below about 150 K. Smoluchowski hypothesizes that

there should be up to 50% of the ice layer at an impact site which is amorphous ice. Impacts of

meteorites into ice may produce crystalline ice polymorphs in the crater; the ejecta will consist of

both liquid and vapor; the liquid will partially evaporate and the rest will refreeze on the surface

forming regular crystalline ice Ih; the vapor will partially escape from the planet and partly condense

into amorphous ice on the solid ejecta and around the crater. Pressure densification, controlled by

creep or slow plastic deformation and diffusion, is significant to depths of hundreds of kilometers

because of the low temperatures involved. Thermal effects result in densification as well due to:

1) migration of pores toward warmer regions when thermal gradients exist; and 2) diffusion when

isothermal conditions exist.

There doesn't appear to be much data on the dielectric properties of these other forms of ice,

particularly at the cold temperatures of interest for the Galilean satellites, but it is likely that the

dielectric constant is differnet and this may cause interesting inhomogeneities and discontinuities in

the refractive index of the ice.

2.2 The Unusual Radar Backscatterlng Properties

Figure 1 schematically shows the geometry of a radar backscattering observation of the Galilean

satellites using Arecibo. The optimal viewing times are at Jupiter opposition (when Jupiter, Earth

and Sun are in alignment with Jupiter at its closest to Earth) when Jupiter is about 4 AU (astro-

nomical units) from Earth. The round trip light time is a little over an hour. In each experimental

"run" CW (continuous wave, meaning a sinusoidal wave that is unmodulated for a time very long

compared to the period of oscillation) signals were transmitted for the duration of the round trip

light time when the radar was switched to receive mode. Usually circularly polarized fields in one

helicity state were transmitted and the fields in both helicity states were received. On a few occa-

sions linear polarization in one particular orientation relative to the feed of the Arecibo antenna at

transmit time were used and two orthogonal linear polarizations were received.

The use of CW signals permits a certain kind of mapping of the surface of a satellite as described

in Green (1968) (see also Ostro (1987)). Figure 2 shows a satellite of radius R and spin frequency

in radians. A cartesian coordinate system with its Z axis pointing in the direction of Earth and with

the XZ-plane containing the spin axis of the satellite is defined. Also shown is a scattering center

located at spherical polar coordinates (R,O, _). If the incident fields are sinusoids of frequency

w0, then the fields reflected from the scattering center will have a doppler shifted frequency. The

Doppler shifts incurred in the signal received by the radar at Earth are due to many sources such as

the orbital and rotational motions of the Earth, the orbital and rotational motions of the satellite,

and other less important contributions such as Gravitational red and blue shifts. The radar system

at Arecibo is programmed to remove the Doppler shifts due to Earth's motions and the orbital
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motions of the satellite; these motions are known very accurately. The remaining Doppler shift is

due to the spin of the satellite. If we call w the frequency of the reflected fields after these known

effects are removed, then it is a simple matter to calculate

w -wo = 2k0Ysf_sin •

where k0 = wo/c is the wavenumber of the incident fields and Y, is the Y coordinate of the scattering

center. From this formula we see that if we compute the Fourier spectrum of the signal that is

received at Earth, then the power at frequency w has contributions from all scatterers of the same

Y coordinate across the surface of the satellite. Thus, if we look at the power at a single frequency

it is as if we looked at the power reflected in a strip parallel to the plane containing the spin axis

and the radar line of sight.

Another possible mode of operation of the radar that would provide a different sort of map would

be to transmit short pulses. Then the power reflected at a given time before the arrival of another

pulse is due to scattering centers located at the same colatitude O. Thus, this would provide a kind

of map of the surface in terms of rings of constant colatitude. It is also possible to transmit sinusoidal

signals that are modulated by short pulses which would then allow the power to be resolved in time

and frequency. The power at a specified time and frequency would be from scattering centers at the

intersection of a ring of constant O and a line of constant Y, that is, from two points on the surface.

It turns out that it isn't possible to do this kind of mapping on the Galilean satellites as described

here. The reason is that in order to prevent aliasing of the Fourier spectrum, the frequency of the

pulses would have to be larger than the bandwidth of the reflected signals and in order to prevent

a kind of aliasing in the time dispersed signal (to arrange it so that only one pulse is interacting

with the surface of the satellite at a time) it is necessary that the time between the pulses be larger

than the round trip travel time of a pulse from the sub-radar point (at O = 0) to the terminator

(at ® = 7r/2) and back. Thus, these two requirements place constraints on the time between the

pulses, but the constraints are in opposite directions. If B is the bandwidth of the reflected signals

and if T is the round trip time of a pulse across the surface and if T is the time between pulses, then

the two requirements are 1/v _> B and _" _> T which can be combined to one requirement for the

combined type of mapping 1 >_ BT. Assuming g/ = 7r/2, then B = 87rR/(AoP) where A0 = wo/e

is the wavelength of the incident fields and P = 2_rR/fl is the rotation period of the satellite and

T = 2R/c. Table 3 tabulates B, T, and their product. From the table we see that the product

BT is larger than unity in all cases except Callisto at 70 em-A which is not a good wavelength in

terms of SNR; therefore, it is not possible to simultaneously map the surface in frequency and time

delay. Radar targets for which BT is greater than unity are said to be overspread. All of the radar

echoes from the Galilean satellites have been obtained using CW signals. Recently Hudson and

Ostro (1990) developed a method to produce two dimensional maps of the surfaces of spherically

symmetric targets using only Doppler shifted echoes from CW signals from several different rotation

phases (that is, from several different runs of the experiment on different nights). The results of this
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mapping procedure using the most recent Arecibo data are discussed in Ostro el al. (1992).

The analysis presented here deals with the basic mechanisms causing the unusual backscattering

properties of these satellites. Therefore, I will not discuss mapping techniques or correlations between

radar results and optical images.

Figure 3 shows a comparison between a typical radar echo from a terrestrial planet and from

Europa. The main features of this spectrum from Europa is typical of what is also observed from

Ganymede and Callisto and will serve for the purpose of this discussion as a typical spectrum from

the Galilean satellites. Other examples of spectra from Ganymede and Callisto will be shown later.

Table 5 also summarizes the main features of all of the radar echoes obtained up to 1982 (Ostro,

1982). For comparison, numbers are also given for Earth's Moon which is typical of those for the

terrestrial planets; Moon has been studied the most using radar. The first thing that is obviously

different between the icy Galilean satellites spectra and that of a terrestrial planet is the size of

the spectra. The spectra shown in Figure 3 are normalized by the geometric cross-section of the

respective radar target. The total area under the spectrum from the icy Galilean satellite is much

larger than that of the terrestrial planet as can also be seen from the first row of Table 5. Europa

and Ganymede have larger radar cross-sections than would a perfectly conducting sphere of the same

radius as these bodies which would have & = 1. Another striking difference is that in the Europa

spectrum, the spectrum marked SC, which is the spectrum observed in the same circular polarization

helicity state as was transmitted, is larger than the spectrum marked OC, which is the orthogonal

circular polarization helicity state. This is the reverse of the situation that is observed from a

terrestrial planet. Although the linear polarization ratio is not larger than unity, it is significantly

larger than that observed for terrestrial planets. The final difference that is of significance for the

work here is that the spectrum from the terrestrial planet has a strong feature near zero Doppler

frequency, the quasi-specular component, and small refelctivity at other Doppler frequencies, the so

called diffuse component. The spectra from the icy Galilean satellites don't appear to divide into

these two components; they have significant power at all Doppler frequencies and they don't have

a strong, sharply peaked feature at zero Doppler frequency. The power law exponent, m, shown in

Table 5 for the Galilean satellites indicates a broad power spectrum as in Figure 3. If every point

on the surface scattered isotropically over a hemisphere, then the exponent would be 2; this case is

referred to as a Lambert scattering law. The exponent for Moon refers only to the quasi-specular

component. The exponent for the diffuse component is probably closer to the size of that of the

Galilean satellites.

Recent radar investigations of Saturn's satellite Titan (Muhleman el al., 1990) and the polar

ice cap of Mars (Muhleman el al., 1991) show similar radar properties to those of the icy Galilean

satellites.
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2.3 Previous Models and Analysis

In the next chapter I will discuss the analysis I have done of a model first proposed by Eshleman

(Eshteman, 1986a; Eshleman, 1986b). In this section I will discuss four other models that have been

proposed to explain the unusual backscattering properties as well as the work done by Eshleman

prior to the work to be discussed in the next chapter. Figure 4 shows the essential geophysical

structure involved in the five models. Three of these (Ostro and Pettengill, 1978; Goldstein and

Green, 1980; Hag-lots et al., 1985) preceded the radar glory model of Eshleman and this model

shares several of the features of the others. One model (Hapke, 1990) appeared after Eshleman's

model. It is perhaps the most attractive model in terms of its geophysical plausibility, but there is

no way to use the data in hand to discriminate between the different models. Other types of data

such as bistatic radar experiments to explore the phase function of the scattering centers are needed

to completely understand the mechanisms causing the unusual scattering by these satellites.

Most of the models involve multiple scattering in order to reproduce the observed polarization

behavior. However, the radar glory model of Eshleman and the surface crater model of Ostro and

Pettengill involve a small degree of randomness in the placement of the scatterers in a basically

deterministic and special geometry whereas the models of Goldstein and Green and Hapke involve

complete randomness in the location and orientation of scatterers. The model of Hagfors et al. is

the only one that does not involve multiple scattering and doesn't invoke any randomness in its

inital conception. Eshleman (1986), however, showed that this model would predict a null in the

scattering in the backscattering direction unless there were some degree of incoherence involved.

Ostro and Pettengill (1978) showed that the observed polarization properties were consistent

with a model in which the radio waves are reflected twice by hemispherical craters on the surface.

However, since the craters are on the surface, much of the power is transmitted into the ice and this

model is not able to account for the huge radar cross-sections without making the unlikely assumption

that the surface refractive index is closer to that of silicate rocks (n = 2.4) than that of ice (n = 1.8).

This is especially unlikely since it would require Europa to have its surface refractive index be the

closest to that of silicate rocks and it is known that Europa's surface, of the three icy Galilean

satellites, contains the highest ice to rock ratio (see Section 2.1). Ostro (1982) concluded that this

model was not very plausible because of the high refractive index material required and because it

requires craters that are perfectly hemispherical and too smooth on scales of the wavelength.

Goldstein and Green (1980) proposed that the upper few meters of the surfaces of these satellites

are full of randomly oriented cracks and fissures that form voids in the ice with planar facet interfaces

between the ice and vaccuum. They recognized that when a plane wave is incident on a planar facet

at angles greater than the Brewster angle that the incident sense of polarization is largely preserved.

They ran Monte Carlo simulations of photons reflecting from a slab of ice containing such voids

with the orientation of the normal to the planar interfaces being completely random and found that

this model could account for the observed poarization properties of the icy Galilean satellite radar
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echoes. In the best-fit conditions, most of the photons were totally internally reflected from the

voids. They found that the scattered energy behaved very much as if it had been scattered by an

ideal diffusing screen; thus, the direction of the energy is isotropic. Ostro (1982) found that this

calculation of Goldstein and Green had a slight error in it that overestimated the ability of the model

to invert the usual polarization behavior and that the model could not simultaneously be fixed to

fit the polarization behavior and the huge radar cross-sections. Ostro argues that other scattering

mechanisms such as scattering by wavelength sized particles could help to increase the radar cross-

sections, but that these single scattering events would rapidly destroy the ability of the model to

invert the polarization. Nevertheless, he is able to find a match to the data by requiring that the

ice refractive index be very small (n = 1.2 in the case of Europa). He points out that such low

refractive indices imply low mechanical strength and hence make the assumption that voids could

be maintained untenable. He salvages the model by proposing that the voids could be replaced by

material of slightly different refractive index from that of ice and of similar strength.

Hagfors el al. (1985) concluding that the Goldstein and Green model can't account for the huge

radar cross-sections propose a model involving refraction bY spherically symmetric inhomogeneities

in refractive index below the surface of the ice. They assume that the inhomogeneities are large

enough that geometrical optics is valid. Since there are no reflections involved and the incident

fields are simply turned around toward the radar, the incident polarization is preserved entirely.

Also, they find that there is a caustic in the backscattering direction and thus in the geometrical

optics approximation the field is infinite. Thus, they conclude, without calculating the actual radar

cross-sections implied by their model which can't be calculated using geometrical optics, that if this

scattering mechanism operates in conjunction with other mechanisms that the radar properties of

the Galilean satellites are explained by it.

Eshleman (1986) computes the wave optical correction to the infinities predicted by geometrical

optics in the Hagfors et al. model and finds that when polarization is taken into account that the

backscattering from perfectly spherical backscattering lenses would be zero. The principal contribu-

tion to the backscattered field comes from a ring or halo around the scattering center and is similar

to the optical effect called the glory in which such halos are observed around the shadow of an

observer when the incident light comes from behind the observer and the shadow is cast on water

drops in a cloud. To salvage this model, he was lead to propose that the glory halos broke up into

patches or glints due to azimuthal imperfections in the shape of the lense. The fields were coherent

within each such glint that were assumed to be larger than a wavelength in size and the fields from

different glints added incoherently.

Eshleman (1986) proposes a modification to the model in which the inhomogeneity in refractive

index is a step discontinuity at the wall of a buried crater in which the refractive index goes from

some value above the wall to a smaller value below. I-Ie argues that there are a number of ways in

which such structures could occur. One way involves a cratering event followed by a process (either
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sublimation or frost deposition) whereby the surface ice becomes less dense and hence its refractive

index becomes smaller than the more solid ice below which is then followed by a resurfacing in which

the frost layer is overlain by a more dense ice overburden. Another possibility is that the cratering

event itself compacts the ice near the surface of the crater walls which results in a layer of higher

refractive index material lining the walls or perhaps the rocky material of the impacting object lines

the walls of the crater. In any case, the main features of the model are a hemispheroidal geometry

that strongly favors backscattering over scattering in any other direction, a decrease in refractive

index at the hemispherical boundary that permits multiple total internal reflections thereby reflecting

all the incident power at each reflection and also causing a differential phase insertion in two modes

(TE and TM) of reflection, and a slight randomization of the shape that breaks up the glory halo

into several coherent patches. This can be taken purely as a prescription of the electromagnetic

model without being too specific about the mechanical model that goes with it. The key feature

distinguishing this model from the Goldstein and Green model and the ttapke model (to be discussed

next) is the specialized structure and the relatively low order of randomness involved in the Eshleman

model. The result is that the Eshleman model easily accounts for the polarization inversion and the

large cross-sections observed.

Eshleman's analysis does not account for the effects introduced by the interface between the

overburden and the vacuum above and he doesn't calculate the shape of the Doppler spectra from

this model. The work reported in Chapter 3 completes the analysis of the radar glory model. In

that chapter we also consider a possible explanation for the slight frequency dependence indicated

in Table 5.

Hapke (1990) and Hapke and Blewett (1991) propose a different model which is like the Goldstein

and Green model in that it involves mutiple scattering below the ice surface, but it does not involve

total internal refelctions from the scatterers. Hapke proposes that the scatterers are silicate rocks

of about wavelength size suspended in the ice. He points out that despite the randomness involved

there is a coherence involved in the backscattering direction because for any photon which can find

its way through the multiple scatterings back to the radar there is another one that was transmitted

from the radar that found its way along the same path but in the reverse direction. Thus those two

photons will add coherently. The result is that there is an enhancement in a small range of angles

about the backscattering direction where the scattered intensity rises from a diffuse background

level to values as much as two times this level in the backscattering direction. He calls this effect

the coherent backscattering opposition effect (CBOE). This doubling of the power would also occur

in the Goldstein and Green model as well as the Eshleman model. It doesn't appear to have been

included in the Goldstein and Green model, but it has been included in the Eshleman model although

he didn't point it out explicitly presumably because only backscattering results were being discussed

and the only significance of the factor of two for this one direction is that the solution of the problem

is incorrect without it. (See section Chapter 3 where the factor of two is explicitly pointed out and
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the resulting formulas can be easily seen to agree with Eshleman's.) Hapke does a scalar radiative

transfer analysis and hence his calculation of polarization properties is done in an ad hoc manner.

Nevertheless, Hapke concludes that his model predicts the observed polarization properties, the huge

cross-sections, and the broad Doppler spectra. However, to obtain a fit to the large cross-sections he

requires scatterers with albedos approaching untiy, that is, with low loss. Peters (1992) did a more

rigorous perturbation calculation including polarization effects for the Hapke physical model and

found that if the scatterers are anisotropic, that is, they are forward scatterers implying they are

of wavelength or larger size, then the polarization ratios computed from his analysis are consistent

with those observed. In his paper he only does the comparisons with the polarization ratios and

doesn't discuss conditions necessary to fit the cross-sections.



Chapter 3

Analysis of Radar Glory

Backscattering

3.1 General Considerations for Scattering by Satellites

We consider plane waves incident on a spherical planet as shown in Figure 2. We define a satellite-

centered cartesian coordinate system with unit basis vectors (ex, ev, ez) having ez pointing toward

Earth and ex , ez , coplanar with the spin axis, £/, of the planet. We will consider a scattering

center located at the point (X, Y, Z). It will he convenient to also define angular coordinates (O, 4,)

of the scattering center as shown in Figure 2.

The incident field is a time harmonic travelling wave with frequency w0, wavelength A0, and

wavenumber ]Co -- 2_r/A0. The medium is vacuum with permeability P0, and permittivity e0 so

that the wave phase velocity is c = x/-#oeo, and the wave impedance is _0 = x/r_-0/e0 • In the

planet-centered coordinate system the incident field is,

E' = (Eixex + E_,ev) e(-'kz-'_°') (l)

Hi 1 Ei- ez x (2)
rl0

where E_ and E i, are constant, complex amplitudes. We will consider both linearly polarized and

right-hand circularly polarized incident fields. The linear polarized case will have its electric field

vector at an angle (I,v with respect to the X-axis. For the linearly polarized case,

E_ _--- E i cos (I_p (3)

E_, = E i sinq'P. (4)

For the circularly polarized case,

E_ = E_ (_)

12
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E_ = -iE' (6)

We are interested in calculating the radar cross-section for backscattering of two orthogonal

components of the electromagnetic field, either the same linear (SL) and orthogonal linear (OL)

or the same circular (SC) and orthogonal circular (OC) relative to the transmitted polarization.

The reflected field, Ep, where P indicates the polarization, is time varying with a deterministic

component that is a rapidly oscillating signal modulated by the Doppler shifted and time delayed

contributions from the many scattering centers and a random component due to the many scattering

events that contribute to the backscattering from a particular scattering center which is usually

treated in a statistical manner. (Actually, there is no randomness involved because there is only

one realization of the scatterers and there is no relative motion, random or otherwise, between the

scatterers. Thus, the detailed time variation of this 'random' component of the reflected signal

contains information about the scattering process, but it is too much information relating to the

properties and locations of each individual scatterer. There is no way to use all this information.

In order to reduce the amount of information we forgo any detailed knowledge of the properties

and locations of the individual scatterers and opt for a statistical treatment of those properties in

which we only describe the mean and perhaps standard deviation of those properties and hence of

the time varying reflected signal.) Define Ep(X, Y) to be the backscattered field received at Earth

due to a scattering center of area dA located at the point (X, Y, _/R 2 - X _ - y2) on the surface of

the satellite (refer to Figure 2). This field is time varying consisting of a time harmonic component

at the Doppler shifted frequency w given by

w - w0 = 2k0Yf_sin • (7)

and a random component due to the many backscattering events included in the area dA (neglecting

other time variations that are removed as discussed in Section 2.2). The radar cross-section of this

scattering center is then defined as (Green, 1968),

 p(x, Y) = lEe(X, Y)l
jE_j2 (8)

where the line over [Ep(X, y)[2 indicates an infinite time average. I will write this as

ae(X, Y) = N(ap(X, Y)) (9)

where (o'p(X,Y)) indicates the expected value (i. e., ensemble average) of the radar cross-section

for a single backscattering event and N is the number of backscattering events within the area dA.

We also define the specific cross-section (the cross-section per unit area of surface also known as the

surface scattering coefficient (Ulaby el al., 1981)),

dgp
o'_,(X, Y) = _ = p(X, r)(o'p(X, Y)) (10)
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where _rp is the total cross-section from all scattering centers and p(X, Y) is the number density of

backscattering events on the surface.

The total reflected field Ep is again time varying due to the time delays and Doppler shifts from

the individual scattering centers. Since the icy Galilean satellites are overspread and CW signals are

used, we assume that the sampling rate of the signal is larger than any of the time delays due to the

radar depth of the target. The magnitude squared of the Fourier transform of Ep in a frequency

band (f, f + dr) is proportional to the total radar cross-section trp due to many scattering centers

located in a strip of width dY parallel to the X-axis centered at Y corresponding to f. The specific

radar cross-section from this strip is,

/__ (r°p(X,Y)sec@dX (ll)
dab

a_(Y) - d-'-_- =

where the see@ = R/x/R 2 - X 2 - Y_ factor is due to the fact that an area dA = R 2 sinOdOd¢

located at polar angle @ on the spherical surface projects to an area sec @ dX dY on the XY-plane.

The total radar cross-section of the target is then given by one more integration,

Zap = Cr°p(Y) dY (12)
R

Once we calculate the average cross-section of a single backscattering event, that is, (o'p(X, Y)),

then we can calculate the specific and total cross-sections, polarization ratios, and Doppler power

spectra to compare with the data. In the next section we calculate this for the radar glory model.

3.2 Backscattering from Buried Craters

Figure 5 shows a buried crater from which we wish to calculate the radar cross-section. To analyze

the backscattering we use geometrical optics to trace the rays through the ice overburden, through

multiple bounces in the crater, and back through the ice-overburden. In the geometrical optics

approximation the effects on the amplitude and field divide into purely geometrical considerations

relating to the electrical path length of the rays and the spreading of a bundle of rays into a curved

wavefront due to the curvature of the boundaries encountered and purely plane wave refraction and

reflection effects at the boundaries (the usual assumption is that the radii of curvature of boundaries

are large compared to the radius of curvature of the wavefront). Figure 5 shows the multiple effects

on the complex amplitude of the electric field. First, the incident Electric field E _ is multiplied

by a rotation matrix J to put its components into TE and TM orientations. Then this field is

multiplied by the Fresnel transmission coefficients for TE and TM incidence which is accomplished

by multiplying by the matrix Tin. Then we multiply by a rotation matrix K to put this transmitted

field's components into TE and TM orientations for reflection from the walls of the crater. It

turns out that for a spherical geometry such as we are assuming for the crater walls, the multiple
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bounces lie in a plane, so the TE and TM components do not change orientation at each bounce.

Then at each bounce we multiply by the Fresnel reflection coefficients appropriate for TE and TM

incidence contained in the matrix R. These coefficients can be complex valued. Then we multiply

by a geometrical divergence factor D accounting for the fact that after reflection from the curved

boundary, i.e., the crater walls, the wave front's curvature is altered. Since the geometry at each

bounce is the same, after N bounces through the crater we multiply by N reflection matrices R N and

the divergence factor DN (it is not simply a product of N divergence factors). Then, we multiply by

a rotation matrix K -1 to put the electric field components into TE and TM orientations appropriate

for refraction back out of the ice which then contributes the factor Tout. Then we multiply by the

divergence factor Dout appropriate for transmission of a curved wavefront through a planar interface.

Finally, we multiply by the rotation matrix j-1 to put the electric field components back into the

orientations of the incident field.

It turns out that there are a few other effects that must be considered. Figure 5 only shows one

possible ray that makes it back to Earth. There are an infinite number of rays possible that make

it back to Earth. If we look below the surface of the ice at the intersection of all these rays with a

plane orthogonal to their path, we find they all lie on a circle of radius ro sin 0 where ro is the radius

of the crater and 0 is the angle between the incident ray and the normal of the crater at each bounce

in the crater. If we look in the plane orthogonal to the Earthward bound rays above the ice (shown

in Figure 5), this circle becomes an ellipse in general. So, to compute the total field at Earth we

have to add up the contribution from all these rays. The result is infinite; there is a caustic in the

geometrical optics field in the backscattering direction. A number of methods are available to correct

for this result without totally abandoning the geometrical optics approach. One method is to use the

geometrical optics field on the plane indicated in Figure 5 and the Kirchoff diffraction integrals in the

Fraunhoffer approximation to propagate the fields to Earth. Another method is Maslov's method

(Maslov and Fedoriuk, 1981; Ziolkowski and Deschamps, 1984; Kravtsov, 1968) which constructs

the geometrical optics field in 6 dimensional phase space (3 spatial and 3 wavevector components)

where there is no caustics anywhere and then uses a hybrid 3 dimensional space consisting of some

spatial and wavevector dimensions to compute the field on the caustic. Either method gives the

same result which is finite.

Another effect is that at some value of O the crater rim will obstruct some of the rays and prevent

them from returning to Earth. The result is that the glory circles below the ice, ellipses above the

ice will not be complete; they will break up into two arcs. Another effect is that we don't expect

that these craters are perfectly shaped and it is proposed that these glory arcs break up into patches

or glints (Figure 6). The fields from each glint are assumed to be coherent, but the fields from two

different glints add incoherently. The one exception is the two glints that are at opposite ends of

a diameter of the glory circle below the ice. For a ray that travels through the path indicated in

Figure 5, there is another ray that travels the exact opposite path. The fields associated with these
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two rays add coherently and they come from the two glints mentioned.

The radar cross-sections for fields received in the orthogonal and same linear (OL and SL respec-

tively) polarizations and those for fields received in the orthogonal and same circular (OC and SC

respectively) polarizations are

CrSL(O, (I)) = CAL(3 -- XL) , aOL(e, (I)) = CAL(1 + XL) (13)

asc(O) = 2CAt(1 + xc) , aoc(O) = 2CAt(1 - xc). (141

C- 7rr_rH (15)
A0

where F is the fraction of the glory arcs filled by glints, H is defined in Figure 6, and A0 is the

radar wavelength. The A's and x's are (assuming total internal reflections occur; I'll write the more

general expressions later) given by

AL= lbo{[(T?+T_)+(T12-T_)cos2(O-Op)][¢o-(l+x)6]+2T1T2(l+x)5} (161

ALXL = bo{ 2T1T2x¢0

+[(7"12 - T_) cos 2(¢ - Cp) - (7"12+ T_) cos 4((I) - ¢P)][¢0 - (1 + x)6] (17)

+2TIT2[3(1 + x)6 - x¢o] cos 4((I) - _p)}

Ac = bo{(T_ + 7"22)¢0 - (T1 - 7'2)2(1 + x)6} (18)

AcX_ = 2boT1T2x¢o (191

where
sin 20

= --v, (20)
N

n01 sin 01 = sin O, (I)p is the direction of polarization for the linear polarization case,

T1 = 4n01 cos O cos O'/(cos O + n01 cos 0') 2 (21)

is the product of the TE Fresnel transmission coefficient for the ray entering the ice and the TE

Fresnel transmission coefficient for the ray exiting the ice,

72 = 4n01 cos O cos O'/(n01 cos 0 --I-cos O') 2 (22)

is the same product for the TM fields,

x = cos[2N tan-l(cos 0(sin 2 0 - n2)1/2/sin 2 0)] (23)

is the mode decoupling factor defined in Eshleman (1986),

6 = ¢0/4 - sin(4¢o)/16, (24)
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and ¢0 = _r/2 if no shadowing occurs or sin ¢0 = cot 0 cot O' when this last definition has a real

solution. The factor D accounts for possible defocusing of the wavefront as it emerges from the ice

into vacuum. Since Eshleman (1986) doesn't consider the effects of the ice overburden he doesn't

include this factor, i.e., he has

7) = 1. (25)

If the ice overburden is very thick, then the wavefront encountering the ice is spherical and

cos 2 e

-- n021cos20' (26)

We believethese two formulas for:/:)provide upper and lower bounds respectivelyon the cross-

sections.

Figure 7 shows the dependence of A and x on the relativerefractiveindex, n, of the layerof

lower refractiveindex below the crater(relativeto the refractiveindex of the iceoverburden) and

the number of bounces, N, for a craterat e = o. The best fitto the observed totalpower in the

variouspolarizationsisgiven by x = 0.23 and N = 3.

Figure 8 shows the variationin the radar cross-sectionswith respect to colatitudeO and the

shapes ofthe glory arcs.Surfacecratersand buried cratersare compared. Of course the sizeofthe

radar cross-sectionsforthe surfacecratersare much smallerthan those ofthe buried craters.

Ifwe assume the densityof cratersisuniform acrossthe surfaceofthe satellite,then we can use

eqs. (I0),(11),and (12) to compute the Doppler spectra and totalcross-sections.The resulting

equations would look similarto those given above for a singlecraterexcept that now the A's and

x's are integralsofthe previousexpressionsacrossthe surfaceand the constant C becomes,

C = M_rr_ FH
47rR2 A (27)

where M isthe totalnumber ofburied craterson the surfaceofthe satellite.Thus, C isproportional

to the density of buried craters on the surface and is a free parameter to be determined by fitting

to the observations.

(Eshleman, 1986b) noted that a wavelength dependence that has been observed in the relative

amounts of power reflected in the orthogonal polarizations could be due entirely to a wavelength

dependence in the parameter x. One way that x may be wavelength dependent is if the refractive

index at the crater walls makes a smooth transition from no1 to no_. Here we will model the transition

zone as a locally planar layer of thickness d with an exponentially decreasing refractive index (Figure

9) because this is the simplest profile that admits an analytic solution for both TE and TM modes.

The solution is in terms of Bessel functions whose order depend on kl sin 8 where l is the scale height

of the exponential and/7 is the angle of incidence of the rays at the crater wall.
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3.3 Comparison of Theory with Observations

In the previous papers (Eshleman, 1986a; Eshleman, 1986b; Eshleman, 1987), it was found that

x=0.23 is required to achieve a close fit to the observations tbr all three moons. There are several

ways to get x=0.23, but the one that seems most likely is the three-bounce case involving TIR.

This requires the hypothesis that n--0.7967. The first three rows of Table 6 compare the observed

total radar cross-section and the ratios of the orthogonal components of the circular and linear

polarization cross-sections with the predictions of the model. For _ under the theory column we

have used C=l and given the upper and lower bounds based on the new analysis and the analysis

in Eshleman (1986) respectively. In order to match & for Europa we require C=3.9 or 0.7 depending

on the importance of a defocusing effect that was included in the above formulas. If FH/A were

l0 (say F=.5, H=2m, and A=.lm), then the buried crater model requires 39% or 7% coverage of

the moon's surface by glory craters. Also, note the excellent fit between the polarization ratios for

Europa and Ganymede at 12.6cm.

The last two rows of Table 6 characterize the shape of the power spectra in terms of an exponent

for a cos m O fit to the actual curves. The power in narrow frequency bands is an integration over

many craters on lines which are orthogonal to the line of sight and parallel to the spin axis of the

moon. The theoretical numbers are based on the new analysis that we have called the lower bound.

We don't know yet to what degree the depth of the glints below the surface will affect the shape of

the spectra. A comparison between the m values provide new support for the buried crater model.

However, they do indicate that the theoretical spectra are narrower than the observed spectra. Also,

the moc/msc values indicate that the observed OC spectra are a little narrower than the SC spectra

while the model has the opposite trend.

It is not clear how precisely a theory needs to match these exponents since the observed power

spectra are full of additional structure that is not modelled well by the assumed law. The plots in

Figure 10 show typical spectra for Europa, the cos m O fit to the data, and the spectra computed

for the buried crater model. This clearly shows that a precise fit to m is not necessary to produce

simulated spectra that model the data quite well. We also show for comparison simulated spectra

for Earth's moon based on empirical formulas determined by Evans (1957), where the SC echo is so

weak that it is not visible at the scale shown.

In Table 5 we see that Ganymede has been studied at two wavelengths and that there is a wave-

length dependence in these observations. Here, we have only addressed the dependence indicated

for &sc/groc. To explain the pc data for Ganymede, x must go from about 0.22 at A=12.6 cm to

about 0.33 at A=3.5 cm. Based on the assumption of a gradient in the refractive index at the crater

walls as described in the last section, we have computed, in Figure ll, x as a function of d/A for a

single crater at O = 0 . We have found that the x value of a single crater is very nearly the same as

the x value for the entire moon. The 12.6 cm point is determined where x=0.22 and then the 3.5

cm point is determined by the ratio of wavelengths. The x value is seen to increase with decreasing
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wavelength which is consistent with the data. If this is indeed the cause of the dependence, radar

measurements at different A would be extremely sensitive to the specific subsurface conditions on

these moons.



Chapter 4

Conclusion

The radar glory model is able to account for all the main features in the radar backscattering data

from the icy Galilean satellites. In the previous chapter we presented the geophysical model in terms

of a special structure involving buried hemispherical craters in which the refractive index abruptly

decreases at the crater wall. It is not known if such a structure actually exists or how it could be

formed in detail. It may even be possible that the structure is not formed from a cratering event

and that the required variation in refractive index is due to changes in the ice crystalline state

as discussed in Section 2.1. We were led to this model via the electromagnetic requirements for

producing the observed echoes. It does not seem possible to produce the large radar cross-sections

with a model such as that of Hapke (1990) or of Goldstein and Green (1980) involving complete

randomness in the scattering mechanism. It seems that something more than the factor of two

enhancement due to the coherent backscattering opposition effect discussed by Hapke is needed and

that is what leads us to believe that a low degree of randomness imposed on a basically deterministic

geometry that favors backscattering is required. In addition to this, though, total internal reflection

also needs to occur to produce the large cross-sections and this conclusion is common to both the

radar glory model and the Goldstein and Green model. Thus we conclude that these main features of

the electromagnetic model--the low degree of randomness imposed on a deterministic geometry that

favors backscattering such as a hemisphere and total internal reflection--are important ingredients

of the true explanation and provide some information regarding the geophysical structures required.

Unfortunately, the data do not sufficiently constrain the models and additional data types are needed

to discriminate between the competing theories.

2O
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Table 1:

Summary of the Physical Characteristics of the Icy Galilean Satellites

Parameter Europa a Ganymede a Callisto _

Orbital Radius b (103 km) 670.9 1,070 1,883

Radius (km) 1,569 2,631 2,400
Rotational Period (hours) 85.22 171.7 400.5

Density (103 kg m -3) 2.97 1.94 1.86

Subsolar Surface Temperature c (K) 132 155 169

Average Surface Temperature c (K) 93 ll0 120

Geometric Albedo 0.6 0.4 0.2

Unless otherwise stated, data are from Burns (1986).
b The orbits of all these satellites are virtually circular.

Data from Gaffney and Matson (1980)

Table 2:

Absorption Length in Ice at Cold Temperatures a

n=l.8

(kin)
T (K) 3.5 cm-A 12.6 cm-A 70 cm-A

90 7.1 66. 1.3 x 103
110 0.94 8.8 1.7 x 102

130 0.23 2.2 43.

150 0.08 0.78 15.

Based on extrapolation formulas given by Thompson and Squyres
(1990).
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Table 3:

Polymorphs of Ice That May be Present on the Icy Galilean Satellites

Satellite Polymorphs stable

at equator

Europa lI, VI, V, IX

Ganymede II,I¢

Callisto Ic

Based on results from Gaffney and Matson (1980)

Table 4:

Bandwidths and Time Dispersions for the Icy Galilean Satellites

Target

B _ (Hz) BT ¢

T b (ms) 3.5 cm-A 12.6 cm-_ 70 cm-)_ 3.5 cm-A 12.6 cm-_ 70 cm-_

Europa 10 3670 1020 184 36.7 10.2 1.84
Ganymede 18 3060 850 153 55.1 15.3 2.75
Cailisto 16 1190 330 59.4 19.0 5.28 0.95

a Bandwidth, B = 8rR/(_oP) with data from Table 1.

b Time Dispersion, T = 2R/c with data from Table 1.

¢ A target for which BT >_ 1 is said to be overspread and it is not

possible to simultaneously map the surface of the target in Doppler

and time delay.



CHAPTER 5. TABLES 27

Table 5:

Summary of Radar Data from the Icy Galilean Satellites

&

pc
#L
m

moc/msc

Europa
12.6 cm

2.60 + .64
1.56 + .11
0.47 + .07
1.73 + .08
1.08 + .10

Ganymede
12.6 cm 3.5 cm

1.52 + 0.4 1.20 4- .28
1.55+.06 2.0+.03
0.47 + .08
1.46 + .04
1.21 =h .06

Callisto
12.6 cm

0.64 + .16
1.19 + .06
0.55 + .10
1.43 + .05

1.13 4- .09

Earth's Moon

10. cm

.05

.05

<<1.
30.

20.

The data for the Galilean satellites are from Ostro (1982). Moon data are from Hagfors and Evans

(1968) and Evans (1957): _ is at 10 cm; the other numbers are at other wavelengths where they
were available.

& = (radarcross - section)/(TrR 2)

& = 6"s_ + &oc = 0"sL+ #OL

_c = _sc/_oc
IJL = aOL/aSL
m, moc and msc are exponents for a least squares fit of the power spectra to a cosm 0 law where "
0 is the angle between the radar line of sight and the surface normal of the moon.

Where R is the radius of the particular satellite, C and L refer to circular and linear polarizations,
and S and 0 refer to same and orthogonal to the transmitted polarization.

Table 6:

Comparison Between Observations and Buried Crater Model

Europa Ganymede Callisto Buried craters
12.6 cm 12.6 cm 3.5 cm 12.6 cm N=3, n=0.7967, C=l

2.60+0.64 1.52+0.40 1.20+0.28 0.64+0.16 0.67 - 3.6

dsc / &oc 1.564-0.11 1.554-0.06 2.0+0.03 1.194-0.06 1.60

aoL/&sL 0.47+0.07 0.474-0.08 0.55+0.10 0.44
m 1.734-0.08 1.464-0.04 1.43+0.05 1.95

moc/msc 1.08+0.10 1.21+0.06 1.134-0.09 0.989

The data for the Galilean moons are from Ostro in/7/. _ = &sc + #oc = &sL + &OL' m, moc and msc are

exponents for a least squares fit of the power spectra to a cos m 19 law where 19 is the angle between the radar

line of sight and the surface normal of the moon.
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Figure 1: Arecibo-Galilean satellites geometry. Geometry of radar backscattering from the Icy
Galilean satellites.

Figure 2: Satellite Geometry. Convenient coordinates for radar backscattering from a scattering
center on a satellite.

Figure 3: Comparison of radar echoes from a terrestrial planet and an icy Galilean satellite.
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Figure 4: Five models for backscattering by icy satellites

Figure 5: Buried crater geometry and its effects on radar backscattering

Figure 6: Radar glory arcs and glints
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Figure 7: Dependence of A and x on n and N

Figure 8: Variationofburied and surfacecraterradar cross-sectionwith colatitude

Figure 9: Reflection of electromagnetic field from a layer with an exponentially varying refractive
index
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Figure 10: Comparison of buried crater Doppler spectra with observations from an icy Galilean

satellite

Figure 11 : Variation of x for reflection from crater with a layer of material with exponentially varying
refractive index
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t
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-f/fo

Moon
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Fig 2. Typical power spectra for circularly polarized waves reflected from E_tropa compared

with the theory and the cos" e law. The data al'e from O_tro/7/pat_e ")._l. The exponents

for the data(theory) are:|moc=2.14(1.94), msc=1.22(1.96), and m=l.5G(1.O5).J_ _ The data

and the theoretical curves have been norm_zed to a=Z.U; however the _'os'" O curve is

not normalized in this manner.
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Developments in the Buried-Crater Model for l_,,dar Echoes from Icy Moo__,

E.M. Gurrola, V.R. Eshleman (Stanford University)

The buried-crater model introduced by Eshlermm (Sc/en_ 234 587, 1986) has
been successful in accounting for anomalously large radar echoes with unex-

petted polarization ratios that have been observed from three icy moons of

Jupiter: Europa, Ganymede, and Callisto. A simple model of a single buried

crater with axially incident rays plus a single assumption regarding the ratio
of refractive indices in the layers above and below the crater walk was found

adequate to model the power in two orthogonal circular and linear polarizations
for all three moons.

_.0

We have found that, with further development of

the model to include effects due to angular po- ,.s
sition of the craters plus a simple assumption of

uniform coverage by identical craters, this model

aLso provides a good fit to the only other type

of well-established data: the doppler-frequency "g
power spectra. The figure shows theoretical curves

of total radar cross-section for buried and surface

craters and for a typical Europa spectrum (data .s
from S. Ostro in Satellites o/Jupiter, D. Morri-

son, Ed., U. Arizona Press 1982). The light, un-

labeled line is a least-squares fit of the data to a .0
cos=e law where e is the angle between the -, .0 -.s .a ._ ,

" f/'¢O

incident rays and the moon's surface normal. This fit to the data requires 8 times

as many surface craters as buried craters. The buried-crater fit gives circular
and linear polarization ratios (ratio of power in the unexpected to the expected

polarization) of 1.60 and 0.44; averages of the observations for Europa are 1.56

and 0.47 respectively. We also find by accounting for these additional effects,

the original estimates of the reflected power from buried craters were too large.
However, the buried crater model still predicts larger echoes than other models

that can also account for the polarization ratios. We will compare this model

with other models that have been proposed with regard to their correspondence
to current data as well as their predictions for other experiments that could be

done in the future, such as range mapping. Despite an uncertain geophysical
hypothesis, the buried-crater model is distinguished by its ability to simultane-

ousiy account for the main features in all the types of data with a minimum of

ad hoc assumptions. Finally, by introducing a gradation in refractive index at

the crater walk, it is possible to model the sparse data indicating a frequency
dependence in the polarization ratios.
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ON THE ANGLE AND WAVELENGTH
DEPENDENCIES OF THE RADAR
BACKSCATYER FROM THE ICY GALILEAN

MOONS OF JUPITER

Eric M. Gurrola and Von R. Eshleman

Center for Radar Astronomy, Stanford University, Stanford, CA 94305,

U.S.A.

ABSTRACT

In thispaper we report new developments in the buried crater model that has proved successfulin ex-

plaining the anomalous strengths and polarizationsof the radar echoes from the icy Galilean moons of

Jupiter- Europa, Ganymede, and Cailisto.We have extended the theory to make predictionsof the radar

cross-sectionsat allpoints on the surface of the moon, to compute the shape and strength of the power

spectra,and to model a wavelength dependence that has been obe_rved.

DESCRIPTION OF THE MODEL AND ITS THEORY

In/i-3/, Eshleman showed that the huge amplitudes and the unusual polarizationpropertiesof the radar

echoes from Europa, Ganymede, and Callisto could be explained using a model of buried craters which

have a decrease in refractive index at the crater walls. The electromagnetic model involves total internal

reflection(TIR) in a geometry that strongly favorsbacksc_tteringand issimilarto the well"known optical

phenomenon calledthe glory.This model has some features in common with the surface cratermodel of

Ostro and PettengiU/4/, the random-facet model of Goldstein and Green/5/, and the refractionscattering

model of Hagfors, Gold and lerkic/6/.

In the previous analysis,Eshleman considered the radar propertiesof a singleburied crater at the center

of the discof each moon. This corresponds to O=0 in the localcratergeometry shown in Figure I. Also,

he did not enter intothe complications due to the boundary at the surfaceof the ice.This interfacehas a

smalleffectdue to the plane wave transmiemioncoe_cients which may be obviated by a thin transitionzone

that matches the impedances of the two media _bove and below the surface. However, this interface has a

more significant effect in defocusing the curved wavefront that is returning to Earth from small coherent

glints in the crater. This effect is dependent on the size of the two radii of curvature of the wavefront

relative to the depth of the glint. The previous analysis may be considered an upper bound on the model.

To bracket the results with a lower bound we have assumed that the glints axe deep below the surface so

that the emerging wavefronts are sphericalwhen they encounter the interface.

nOl

n02 m nn0!

Fig. 1. Geometry of a buried crater and a three-bounce (N=3) ray used in the electromag-

netic model. The angle O is between the surface normal of the moon and the radar line of

sight. For an ice-overburden, n_l = 1.8. In the model n_ < n01 (i.e., n<l).
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The simplest version of the theory obtains when the moo_ is assumed to be uniformly covered by identical

craters. This may correspond in the actual situation to a uniformity in the average crater properties across

the surface of the moon. In that case we can write the normalized (divided by :rR 2) cross-sections in the
followingform :

_,_ = CA(3 - z) , _o_ = CA(1 + z)

_,c = 2CA(1 + z) , _oc = 2CA(1 - z)

C = Mr_ FH
4_R 2 A

where subscriptsL and C referto linearand circularpolarizations;S and O referto same and orthogonal to

the transmitted polarization;M isthe totalnumber of buried craterson the surfaceof the moon; F isthe

fractionof the centralglorycirclethat isfilledby glints;H isthe azimuthal sizeof each glint;ro and R are

the craterradius and the moon radius respectively.The constant C isproportional to the surface density

of cratersand is used to model the observed radar crou-section of each moon. A and z are complicatcd

integralsof the radar cross-sectionsof each craterover the surface of the moon. In the theory presented

in/I-3/, the mode decoupling factor,z, when TIR occured, was simply the cosineof the product of the

number of bounces made by the rays in the crater and the differencein phase between the TE and TM

reflectioncoefficientsat the craterwalls.In our new theory,x ismore complicated in principle.However,

numerically the z of the whole moon isvirtuallythe same as the z for a singlecrater and virtuallythe
same as in the originaltheory.

The advantage of writing the cross-sectionsin the above form is that only two independent quantities-

CA and x - are required to characterizefour quantities- the four radar cross-sectionsof each moon. If

the average crater propertiesare not su_ciently uniform then thisis not possible;the z for the linear

cross-sectionswill differfrom the x for the circularcross-sections.Remarkably, the x values inferred

separatelyfor linearand circularpolarizationsindicate that Europa and Ganymede are consistent with
the assumption of uniformity.

In /I/, Eshleman noted that a wavelength dependence that has been observed in the relativeamounts of

power reflectedin the orthogonal polarizationscould be due entirelyto a wavelength dependence in the

parameter z. One way that z may be wavelength dependent isifthe refractiveindex at the crater walls

makes a smooth transitionfrom no, to n_. Here we model the transitionzone as a locallyplanar layer

of thicknessd with an exponentially decreasing refractiveindex because thisis the simplest profilethat

admits an analyticsolution.(The solution isin terms of Bessel functions whose order depend on klsin0

where I isthe scaleheight of the exponential and 0 isthe angle of incidenceof the rays at the craterwall.)

RESULTS

In the previous papers/i-3/, itwas found that z--0.23 isrequired to achieve a closefitto the observations

for allthreemoons. There are severalways to get z--0.23,but the one that seems most likelyisthe three-

bounce case involvingTIR. This requires the hypothesis that n--0.7967. The firstthree rows of Table I

compare the observed totalradar cross-sectionand the ratiosof the orthogonal components of the circular

and linearpolarizationcross-sectionswith the.predictionsof the model. For b under the theory column

we have used C--I and given the upper and lower bounds based on the new analysisand the analysisin
/I/ respectively.

Europa Ganymede Calllsto Buried craters

12.6 cm 12.6 cm 3.5 cm 12.6 cm N=3, n=0.7967, C=I

b 2.60±0.64 1.52"1"0.40 1.20:1:0.28 0.64:1:0.16 0.67 - 3.6

bsc/boc 1.56+0.11 1.554-0.06 2.04-0.03 1.194-0.06 1.60

boL/bs_ 0.47+0.07 0.474-0.08 0.55"t"0.10 0.44

m 1.73+0.08 1.46±0.04 1.434.0.05 1.95

moc/msc 1.08+0.10 1.214-0.06 1.134-0.09 0.989

Table I: The data for the Galilean moons representaverages over many observations and

are from Ostro in/7/, b -- bsc -t-boc = bs_ + hoe. m, moc and m,c are exponents for a

leastsquares fitof the power spectra to a cos" 0 law where O is the angle between the
radar lineof sight and the surfacenormal of the moon.

11
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In order to match b for Europa we require C=3.9 or 0.7 depending on whether the lower or upper bound

is used. If FH/)_ were 10 (say F=0.5, H=2m, and A=0.1m), then the buried crater model requires 39% or

7% coverage of the moon's surface by glory craters. Also, note the excellent fit between the polarization

ratios for Europa and Ganymede at 12.6an.

The last two rows of Table 1 characterize the shape of the power spectra in terms of an exponent for a

cos m e fit to the actual curves. The power in narrow frequency bands is an integration over many craters

on lines which are orthogonal to the line of sight and parallel to the spin axis of the moon. The theoretical

numbers are based on the new analysis that we have called the lower bound. We don't know yet to

what degree the depth of the glints below the surface will a_ect the shape of the spectra. A comparison

between the m values provide new support for the buried crater model. However, they do indicate that

the theoretical spectra are narrower than the observed spectra. Also, the moc/msc values indicate that

the observed OC spectra are a little narrower than the SC spectra while the model has the opposite trend.

It is not clear how preciselya theory needs to match these exponents since the observed power spectra

are fullof additionalstructurethat isnot modelled wellby the assumed law. The plots in Figure 2 show

typicalspectra for Europa, the cosm e fitto the data, and the spectra computed for the buried crater

model. This clearlyshows that a precisefitto m isnot necessary to produce simulated spectra that model

the data quite well.We alsoshow for comparison simulated spectra for Earth's moon based on empirical

formulas determined by Evans/S/, where the SC echo isso weak that itisnot visibleat the scaleshown.

2.0

1.5

1.0

0.5

0.0

OC SC OC + SC

' _ ;" "i_

-i.0-0.s 0.0 0.s 1.0 -i.0-0.s 0.0 0.s

-f/fo

• DATA
COSrn®

N:3 Buried Croters

Fig 2. Typical power spectraforcircularlypolarizedwaves reflectedfrom Europa compared

with the theory and the cosm {3law. The data are from Ostro /7/ page 221. The exponents

for the data(theory) are: moc--2.14(1.94),msc=1.22(1.96), and m=I.56(1.95). The data

and the theoreticalcurves have been normalized to b=2.6; however the cosm O curve is

not normalized in thismanner.

1.0

In Table I we see that Ganymede has been studied at two wavelengths and that there is a wavelength

dependence in theseobservations. Here, we only consider the dependence indicatedforbsc/boc. To explain

the/_c data for Ganymede, x must go from about 0.22 at A=12.6 cm to about 0.33 at A---3.5cm. Based

on the assumption of a gr_lient in the refractiveindex at the craterwallsas described in the lastsection,

we have computed, in Figure 3, z as a function of d/A for a singlecrater at e --0 . "vVehave found that

the x valueof a singlecraterisvery nearly the same as the x value for the entiremoon. The 12.6cm point

isdetermined where z--0.22 and then the 3.5 cm point isdetermined by the ratioof w_velengths. The or

value isseen to increasewith decreasingwavelength which isconsistentwith the data. I£thisisindeed the

cause of the dependence, radar measurements at differentA would be extremely sensitiveto the specific

subsurface conditions on these moons.

12
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0.55

0.44

_" 0.33

0.22

¢

//" i

0.00 0.05 0.10

[]= 12.6cm A
= 3.5cm ,X

0.11 I I

0.15 0.20 0.25

d/X
Fig 3. z versus d/A for three values of n near the optimal value determined for A=12.6cm.

CONCLUSION

We have demonstrated that the buried crater model is consistent with the anomalous radar characteristics

of the Galilean moons. It can explain the surprisingly large crou-sections, the odd reversal of expected

polarizations, the broad angular spectrum of the returns, and the apparent change m polarization properties

with radar wavelength. More accurate and more discriminating types of radar measurements are needed
as further guides for determining the proper theory of the radar echoes from these moons.
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Radar Backscattering by The Icy Galilean Satellites and The Radar Glory Effect.

Eric M. Gurrola and Von K. Eshleman. Center for Radar Astronomy, Stanford University.

Radar echoesfrom theicy Galileansatellites--Europa,Ganymede, and Cailisto--areunique

incharacter,and they may be explainedby a phenomenon thathas been cMled the radar glory

effect.1.2_,4We have analyzed the radarglory backscatteringfrom buriedcratersas a possible

model forthiseffect.These cratershave a smMler refractiveindex below the craterthan above

as shown in Fig. I(A). The possibilityexiststhat the rays shown willbe totallyinternally

reflectedat the craterwails,and we assume thisto be truein the following.The rays which

contributeto the backscatteringwillcome from a circularannulus, when viewed beforethe

refractionoccurs at the ice-vacuum surface,in a plane orthogonal to the rays reflectedfrom

the crater(seeFig. I(B)).For cratersnear the llmb of the satellitesome of the rays may be

blocked by the craterrim,and thiscircularannulus willbreak up into two circulararcs.We

assume that thesegloryarcsare broken up intoglintsof dimension H, assumed largerthan the

wavelength,and that thefieldsfrom a pairofglintsconnectedby the ray shown add coherently

whilethe fieldsfrom the variousglintpairsadd incoherently.The coherentadditionofthe fields

from glintpairsarisesbecause forthe ray shown in Fig.I(A), thereisanother ray that travels

the exact same path, but in the oppositedirection.

(A) (B)

Figure I. (A) Geometry of s buried craterand a three-bounce (N=3) ray.The angle

{9is between the surfacenormal of the s:_teUiteand the radar lineof sight.For an

ice-overburden,nol: 1.8.In the model n_ < n01 (i.e.,n<1). (B) Glory arcsof angular

extent 2<b0and a pairof glintsof dimension H. TE and TM electricfieldvectorsare

alsoshown.

Consider s crater located near the surface of the satellite st coordinates (R, e, _), where R

is the satellite radius, e is longitude with e -- 0 in the direction of Earth, and • is latitude with

@ = _r/2 in the plane defined by the spin axis of the satellite and the e = 0 direction. The radar
cross-sections for fields received in the orthogonM and same linear (OL and SL respectively)

polarizations and those for fields received in the orthogonal and same circular (OC and SC

respectively) polarizations are

o.s,.(e,@)= CAL(3 - X,.) , croL(e,@)= CA,.(1 + XL)

= 2CA(:(1 + X=) , O.o=(e)= 2CA<:(1- X=).

(1)

(2)



The constant C is proportional to the number of glint pairs in the glory arcs, and is given by

C = 7rr2oFH/A where F is the fractionof the glory arcsfilledby glints,H isdefinedin Fig.

I(B),and A isthe radar wavelength.The A's and X's are given by

where

a, = _do{[(T_+ TI)+ (T_- T_)cos2(_- ep)][¢o- (i+ =)6]+ 2T,T2(I+ =)_}

AL XL - do( 2T1T2=_
+[(T_ - T_2)cos2(@ - @p)-(T_I + T_2)cos4(@ - @p)][_b0- (1 + z)6]

+2TIT2[3(1 + =)$ - =¢0]cos4(@ - #p)}

Ac = d0{(T_+ Tl)¢o- (T_- T_)_(Z+ =)6}

AcXc = 2doT_T_=_

(3)

(4)

(5)

(6)

sin20 cos2 0

d0= N n_icos20'' (7)

nolsinE)'= sinO, _p is the directionof polarizationfor the linearpolarizationcase,7"i=

4noicosO cosO'/(cos0 + nm cosO_)2 isthe product of the TE Fresneltransmissioncoefficient

for the ray entering the ice and the TE Fresneltransmissioncoefficientthe ray exitingthe

ice,T2 = 4rim cosO cosO'/(nOlcos0 + cos0')_ is the same product for the TM fields,= =

cos[2N tan-I(cos0(sin20 - n2)I/2/sin20)]isthe mode decouplingfactordefinedin referenceI,

= ¢v/4 - sin(4¢_))/16,and _b0= _r/2ifno shadowing occursor sin¢o = cot0cot E¥ when this
lastdefinitionhas a realsolution.

The power spectraare sums ofthe contributionsfrom severalcratersalonglinesof constant

Doppler shiftwhich are lines,when projectedonto the plane of the sky,orthogonal to the line

of sightand parallelto the spin axis.That is,the cross-sectionsat a specifiedfrequency are

integralsof the cross-sectionsin equations(1) and (2) on semi-drcleson the satellitesurface

where cosO cos@ =constant. In Fig. 2 we compare the computed cross-sectionfor circular

polarizationwith echoesobtainedfrom Eurpoa; thisspectrum istypicalofthe spectraobtained.

The totalcross-sectionofeach satelliteisan integrationofthe cross-sectionsinequations(I)

and (2)over the entireilluminatedsurface.These totalcross-sectionscan be writtenin a form

similar to those in equations (1) and (2) except that the A's and X's are the same for linear

and circular polarizations and are complicated integrals that must be computed numerically.

In Table 1 we compare a summary of the main features of the data with the model predictions.

The scaling constant C for these total cross-sections is given by C = (M_r_/41rR_)(FH/A)
where M is the total number of craters on the surface.
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Figure 2. OC, SC, and OC+SC cross-sections obtained from Europa (dashed curves)

on January 10, 1990 at the Arecibo Observatory at 12.6 cm-A and from the model (solid

curves) using N = 3, n=0.7967. The data and the model have been scaled to give a
total cross-section of 2.6.

Europa Ganymede Callisto Buried craters

N = 3, n=0.7967, C = 1

b 2.60 1.52 0.64 0.67

Osc/Ooc 1.56 1.55 1.19 1.60

bo,/osL 0.47 0.47 0.55 0.44

m 1.73 1.46 1.43 1.95

Table I: The data for the Galilean satellitesare for 12.6 cm-A and are from Ostro s.

= bsc + boc - OsL + OoL. These cross-sections are normalized by the geometrical

area _rR3, i.e.,_ - o/rR 2. Here m isthe exponent for a least squares fitof the power

spectra to a cosm e law.




